49 research outputs found

    Stochastic optimisation-based valuation of smart grid options under firm DG contracts

    Get PDF
    Under the current EU legislation, Distribution Network Operators (DNOs) are expected to provide firm connections to new DG, whose penetration is set to increase worldwide creating the need for significant investments to enhance network capacity. However, the uncertainty around the magnitude, location and timing of future DG capacity renders planners unable to accurately determine in advance where network violations may occur. Hence, conventional network reinforcements run the risk of asset stranding, leading to increased integration costs. A novel stochastic planning model is proposed that includes generalized formulations for investment in conventional and smart grid assets such as Demand-Side Response (DSR), Coordinated Voltage Control (CVC) and Soft Open Point (SOP) allowing the quantification of their option value. We also show that deterministic planning approaches may underestimate or completely ignore smart technologies

    Quantifying demand diversity of households

    No full text

    C-Vine copula mixture model for clustering of residential electrical load pattern data

    Get PDF
    The ongoing deployment of residential smart meters in numerous jurisdictions has led to an influx of electricity consumption data. This information presents a valuable opportunity to suppliers for better understanding their customer base and designing more effective tariff structures. In the past, various clustering methods have been proposed for meaningful customer partitioning. This paper presents a novel finite mixture modeling framework based on C-vine copulas (CVMM) for carrying out consumer categorization. The superiority of the proposed framework lies in the great flexibility of pair copulas towards identifying multi-dimensional dependency structures present in load profiling data. CVMM is compared to other classical methods by using real demand measurements recorded across 2,613 households in a London smart-metering trial. The superior performance of the proposed approach is demonstrated by analyzing four validity indicators. In addition, a decision tree classification module for partitioning new consumers is developed and the improved predictive performance of CVMM compared to existing methods is highlighted. Further case studies are carried out based on different loading conditions and different sets of large numbers of households to demonstrate the advantages and to test the scalability of the proposed method

    Transmission network expansion planning with stochastic multivariate load and wind modeling

    Get PDF
    The increasing penetration of intermittent energy sources along with the introduction of shiftable load elements renders transmission network expansion planning (TNEP) a challenging task. In particular, the ever-expanding spectrum of possible operating points necessitates the consideration of a very large number of scenarios within a cost-benefit framework, leading to computational issues. On the other hand, failure to adequately capture the behavior of stochastic parameters can lead to inefficient expansion plans. This paper proposes a novel TNEP framework that accommodates multiple sources of operational stochasticity. Inter-spatial dependencies between loads in various locations and intermittent generation units' output are captured by using a multivariate Gaussian copula. This statistical model forms the basis of a Monte Carlo analysis framework for exploring the uncertainty state-space. Benders decomposition is applied to efficiently split the investment and operation problems. The advantages of the proposed model are demonstrated through a case study on the IEEE 118-bus system. By evaluating the confidence interval of the optimality gap, the advantages of the proposed approach over conventional techniques are clearly demonstrated

    Stochastic Dual Dynamic Programming for Operation of DER Aggregators Under Multi-Dimensional Uncertainty

    Get PDF
    The operation of aggregators of distributed energy resources (DER) is highly complex, since it entails the optimal coordination of a diverse portfolio of DER under multiple sources of uncertainty. The large number of possible stochastic realizations that arise, can lead to complex operational models that become problematic in real-time market environments. Previous stochastic programming approaches resort to two-stage uncertainty models and scenario reduction techniques to preserve the tractability of the problem. However, two-stage models cannot fully capture the evolution of uncertain processes and the a priori scenario selection can lead to suboptimal decisions. In this context, this paper develops a novel stochastic dual dynamic programming (SDDP) approach which does not require discretization of either the state space or the uncertain variables and can be efficiently applied to a multi-stage uncertainty model. Temporal dependencies of the uncertain variables as well as dependencies among different uncertain variables can be captured through the integration of any linear multidimensional stochastic model, and it is showcased for a p-order vector autoregressive (VAR) model. The proposed approach is compared against a traditional scenario-tree-based approach through a Monte-Carlo validation process, and is demonstrated to achieve a better trade-off between solution efficiency and computational effort

    A stochastic dual dynamic programming approach for optimal operation of DER aggregators

    Get PDF
    The operation of aggregators of distributed energy resources (DER) is a highly complex task that is affected by numerous factors of uncertainty such as renewables injections, load levels and market conditions. However, traditional stochastic programming approaches neglect information around temporal dependency of the uncertain variables due to computational tractability limitations. This paper proposes a novel stochastic dual dynamic programming (SDDP) approach for the optimal operation of a DER aggregator. The traditional SDDP framework is extended to capture temporal dependency of the uncertain wind power output, through the integration of an n-order autoregressive (AR) model. This method is demonstrated to achieve a better trade-off between solution efficiency and computational time requirements compared to traditional stochastic programming approaches based on the use of scenario trees

    Data-driven power system operation: Exploring the balance between cost and risk

    Get PDF
    Supervised machine learning has been successfully used in the past to infer a system's security boundary by training classifiers (also referred to as security rules) on a large number of simulated operating conditions. Although significant research has been carried out on using classifiers for the detection of critical operating points, using classifiers for the subsequent identification of suitable preventive/corrective control actions remains underdeveloped. This paper focuses on addressing the challenges that arise when utilizing security rules for control purposes. The inherent trade-off between operating cost and security risk is explored in detail. To optimally navigate this trade-off, a novel approach is proposed that uses an ensemble learning method (AdaBoost) to infer a probabilistic description of a system's security boundary and Platt Calibration to correct the introduced bias. Subsequently, a general-purpose framework for building probabilistic and disjunctive security rules of a system's secure operating domain is developed that can be embedded within classic operation formulations. Through case studies on the IEEE 39-bus system, it is showcased how security rules can be efficiently utilized to optimally operate the system under multiple uncertainties while respecting a user-defined cost-risk balance. This is a fundamental step towards embedding data-driven models within classic optimisation approaches

    Design of a Hybrid AC/DC Microgrid Using HOMER Pro: Case Study on an Islanded Residential Application

    Get PDF
    This paper is concerned with the design of an autonomous hybrid alternating current/direct current (AC/DC) microgrid for a community system, located on an island without the possibility of grid connection. It is comprised of photovoltaic (PV) arrays and a diesel generator, AC loads, and battery energy storage devices for ensuring uninterruptible power supply during prolonged periods of low sunshine. A multi-objective, non-derivative optimisation is considered in this residential application; the primary objective is the system cost minimisation, while it is also required that no load shedding is allowed. Additionally, the CO2 emissions are calculated to demonstrate the environmental benefit the proposed system offers. The commercial software, HOMER Pro, is utilised to identify the least-cost design among hundreds of options and simultaneously satisfy the secondary objective. A sensitivity analysis is also performed to evaluate design robustness against the uncertainty pertaining to fuel prices and PV generation. Finally, an assessment of the capabilities of the utilised optimisation platform is conducted, and a theoretical discussion sheds some light on the proposal for an enhanced design tool addressing the identified issues

    Online security assessment with load and renewable generation uncertainty: The iTesla project approach

    No full text
    The secure integration of renewable generation into modern power systems requires an appropriate assessment of the security of the system in real-time. The uncertainty associated with renewable power makes it impossible to tackle this problem via a brute-force approach, i.e. it is not possible to run detailed online static or dynamic simulations for all possible security problems and realizations of load and renewable power. Intelligent approaches for online security assessment with forecast uncertainty modeling are being sought to better handle contingency events. This paper reports the platform developed within the iTesla project for online static and dynamic security assessment. This innovative and open-source computational platform is composed of several modules such as detailed static and dynamic simulation, machine learning, forecast uncertainty representation and optimization tools to not only filter contingencies but also to provide the best control actions to avoid possible unsecure situations. Based on High Performance Computing (HPC), the iTesla platform was tested in the French network for a specific security problem: overload of transmission circuits. The results obtained show that forecast uncertainty representation is of the utmost importance, since from apparently secure forecast network states, it is possible to obtain unsecure situations that need to be tackled in advance by the system operator
    corecore